Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.20.488878

ABSTRACT

Throughout the COVID-19 pandemic, many prophylactic and therapeutic drugs have been evaluated and introduced. Among these treatments, monoclonal antibodies (mAbs) that bind to and neutralize SARS-CoV-2 virus have been applied as complementary and alternative treatments to vaccines. Although different methodologies have been utilized to produce mAbs, traditional hybridoma fusion technology is still commonly used for this purpose due to its unmatched performance record. In this study, we coupled the hybridoma fusion strategy with mRNA-lipid nanoparticle (LNP) immunization. This time-saving approach can circumvent biological and technical hurdles, such as difficult to express membrane proteins, antigen instability, and the lack of posttranslational modifications on recombinant antigens. We used mRNA-LNP immunization and hybridoma fusion technology to generate mAbs against the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein. Compared with traditional protein-based immunization approaches, inoculation of mice with RBD mRNA-LNP induced higher titers of serum antibodies. In addition, the mAbs we obtained can bind to SARS-CoV-2 RBDs from several variants. Notably, RBD-mAb-3 displayed particularly high binding affinities and neutralizing potencies against both Alpha and Delta variants. In addition to introducing specific mAbs against SARS-CoV-2, our data generally demonstrate that mRNA-LNP immunization may be useful to quickly generate highly functional mAbs against emerging infectious diseases.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Communicable Diseases, Emerging
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.19.488843

ABSTRACT

The COVID-19 pandemic continues to threaten human health worldwide, as new variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged. Currently, the predominant circulating strains around the world are Omicron variants, which can evade many therapeutic antibodies. Thus, the development of new broadly neutralizing antibodies remains an urgent need. In this work, we address this need by using the mRNA-lipid nanoparticle immunization method to generate a set of Omicron-targeting monoclonal antibodies. Five of our novel K-RBD-mAbs show strong binding and neutralizing activities toward all SARS-CoV-2 variants of concern (Alpha, Beta, Gamma, Delta and Omicron). Notably, the epitopes of these five K-RBD-mAbs are overlapping and localized around K417 and F486 of the spike protein receptor binding domain (RBD). Chimeric derivatives of the five antibodies (K-RBD-chAbs) neutralize Omicron sublineages BA.1 and BA.2 with low IC50 values that range from 5.7 to 12.9 ng/mL. Additionally, we performed antibody humanization on a broadly neutralizing chimeric antibody to create K-RBD-hAb-62, which still retains excellent neutralizing activity against Omicron. Our results collectively suggest that these five therapeutic antibodies may effectively combat current and emerging SARS-CoV-2 variants, including Omicron BA.1 and BA.2. Therefore, the antibodies can potentially be used as universal neutralizing antibodies against SARS-CoV-2.


Subject(s)
Coronavirus Infections , COVID-19
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.31.478406

ABSTRACT

The emerging SARS-CoV-2 variants of concern (VOC) harbor mutations associated with increasing transmission and immune escape, hence undermine the effectiveness of current COVID-19 vaccines. In late November of 2021, the Omicron (B.1.1.529) variant was identified in South Africa and rapidly spread across the globe. It was shown to exhibit significant resistance to neutralization by serum not only from convalescent patients, but also from individuals recieving currently used COVID-19 vaccines with multiple booster shots. Therefore, there is an urgent need to develop next generation vaccines against VOCs like Omicron. In this study, we develop a panel of mRNA-LNP-based vaccines using the receptor binding domain (RBD) of Omicron and Delta variants, which are dominant in the current wave of COVID-19. In addition to the Omicron- and Delta-specific vaccines, the panel also includes a Hybrid vaccine that uses the RBD containing all 16 point-mutations shown in Omicron and Delta RBD, as well as a bivalent vaccine composed of both Omicron and Delta RBD-LNP in half dose. Interestingly, both Omicron-specific and Hybrid RBD-LNP elicited extremely high titer of neutralizing antibody against Omicron itself, but few to none neutralizing antibody against other SARS-CoV-2 variants. The bivalent RBD-LNP, on the other hand, generated antibody with broadly neutralizing activity against the wild-type virus and all variants. Surprisingly, similar cross-protection was also shown by the Delta-specifc RBD-LNP. Taken together, our data demonstrated that Omicron-specific mRNA vaccine can induce potent neutralizing antibody response against Omicron, but the inclusion of epitopes from other variants may be required for eliciting cross-protection. This study would lay a foundation for rational development of the next generation vaccines against SARS-CoV-2 VOCs.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.12.459978

ABSTRACT

The surge of COVID-19 infection cases is spurred by emerging SARS-CoV-2 variants such as B.1.617. Here we report 38 cryo-EM structures, corresponding to the spike protein of the Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2) and Kappa (B.1.617.1) variants in different functional states with and without its receptor, ACE2. Mutations on the N-terminal domain not only alter the conformation of the highly antigenic supersite of the Delta variant, but also remodel the glycan shield by deleting or adding N-glycans of the Delta and Gamma variants, respectively. Substantially enhanced ACE2 binding was observed for all variants, whose mutations on the receptor binding domain modulate the electrostatics of the binding interfaces. Despite their abilities to escape host immunity, all variants can be potently neutralized by three unique antibodies.


Subject(s)
COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.11.443686

ABSTRACT

The UK variant of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), known as B.1.1.7, harbors several point mutations and deletions on the spike (s) protein, which potentially alter its structural epitopes to evade host immunity while enhancing host receptor binding. Here we report the cryo-EM structures of the S protein of B.1.1.7 in its apo form and in the receptor ACE2-bound form. One or two of the three receptor binding domains (RBDs) were in the open conformation but no fully closed form was observed. In the ACE-bound form, all three RBDs were engaged in receptor binding. The B.1.1.7-specific A570D mutation introduced a salt bridge switch that could modulate the opening and closing of the RBD. Furthermore, the N501Y mutation in the RBD introduced a favorable {pi}-{pi} interaction manifested in enhanced ACE2 binding affinity. The N501Y mutation abolished the neutralization activity of one of the three potent neutralizing antibodies (nAbs). Cryo-EM showed that the cocktail of other two nAbs simultaneously bound to all three RBDs. Furthermore, the nAb cocktail synergistically neutralized different SARS-CoV-2 pseudovirus strains, including the B.1.1.7.


Subject(s)
Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL